# Three views of 

## ${ }^{\leftarrow)^{5 h_{1}}}$ mathematics



Keith Devlin STANFORD UNIVERSITY devlin@stanford.edu

## Perspectives on mathematics

- To the person who seeks to understand the world (inc. scientists):
* language to describe and quantify the world
- To the person who wants to design/build/construct something (inc. engineers, moviemakers, etc.):
* language to specify
* tools to aid the process (inc. problem solving)
- To the person who wants to engage in trade and commerce:
* precise tracking and planning tool
- To the mathematician:
a rich field of study having intrinsic aesthetic appeal


## The mathematical method

## Mathematics is the science of patterns.

- Identify a particular pattern in the world.
- Study it.
- Develop a notation to describe it.
- Use that notation to further the study.
- Formulate basic assumptions (axioms) to capture the fundamental properties of the abstracted pattern.
- Study the abstracted pattern, establishing truth by means of rigorous proofs from the axioms.
- Develop procedures that you and others may use to apply the results of the study to the world.
- Apply the results to the world.


## An example: CALCULUS

## Infinitesimal calculus

One of the most successful and far reaching technologies of all time.


Isaac Newton


Gottfried Leibniz

## Infinitesimal calculus

Motivating real world problem:

Understand and analyze precisely continuous motion and change.

## Differential calculus

A method for calculating rates of change

## Differential calculus

Problem: To compute the slope of a curve at a given point.


## Calculating the slope at a point

## Calculating the slope at a point



## Calculating the slope at a point



## Calculating the slope at a point



## Calculating the slope at a point



## Calculating the slope at a point



## Calculating the slope at a point


slope of $\mathrm{PQ}=\frac{b}{a}$
The closer Q is to P , the closer is the slope of PQ to the slope of the curve at $P$.

## Calculating the slope at a point



$$
\text { slope of } \mathrm{PQ}=\frac{b}{a}
$$

The closer Q is to P , the closer is the slope of PQ to the slope of the curve at P .

But if Q coincides with P , then $a$ and $b$ are both 0 , and the slope of PQ works out as $0 / 0$, which is undefined.

## Differential calculus


movie: derivative_1.mov

## Differential calculus


movie: derivative_2.mov

## Rules of differential calculus

What makes differential calculus useful (in fact, what makes it a "calculus"), is that there are easily applied, symbolic rules for calculating the derivatives $f^{\prime}(x)$ of common functions $f(x)$.
$x^{n} \rightarrow n^{n-1} \quad \sin x \rightarrow \cos x \quad \cos x \rightarrow-\sin x$
$\tan x \rightarrow \sec ^{2} x \quad a^{x} \rightarrow(\ln a) a^{x} \quad \ln x \rightarrow 1 / x$
$K f(x) \rightarrow K f^{\prime}(x) \quad f+g \rightarrow f^{\prime}+g^{\prime} \quad f g \rightarrow f g^{\prime}+g f^{\prime}$ etc.

## Where the rules come from

The rules are derived by making a subtle change in perspective. Having started by looking at the slope (i.e., the pattern of change) of a function $f(x)$, you shift to looking at the pattern exhibited by the slope approximations

$$
\frac{f(x+h)-f(x)}{h}
$$

as h gets progressively smaller, and extrapolating from that pattern the limit of that sequence of approximations.

## Integral calculus

Calculating areas and volumes of objects whose boundaries are continuously changing

## Integral calculus



## Calculating the area beneath a curve


movie: integration_2.mov

## The integral

$$
\begin{aligned}
& { }^{\nu} \text { Area } \\
& =f\left(\mathrm{x}_{0}\right) \mathrm{h}+\mathrm{f}\left(\mathrm{x}_{1}\right) \mathrm{h}+\ldots+\mathrm{f}\left(\mathrm{x}_{\mathrm{n}-1}\right) \mathrm{h} \\
& =\left[\mathrm{f}\left(\mathrm{x}_{0}\right)+\mathrm{f}\left(\mathrm{x}_{1}\right)+\ldots+\mathrm{f}\left(\mathrm{x}_{\mathrm{n}-1}\right)\right] \mathrm{h} \\
& =\sum_{i=0}^{n-1} f\left(x_{i}\right) h \\
& h=x_{i+1}-x_{i}
\end{aligned}
$$

Calculate this value for larger and larger values of $n$ (smaller and smaller values of $h$ ), and the limiting value gives the exact area. It is called the (definite) integral of the function $f(x)$ from a to $b$ :

$$
\int_{a}^{b} f(x) d x
$$

## The Fundamental Theorem of Calculus

## If the derivative of $f(x)$ is $g(x)$, then the integral of $g(x)$ is $f(x)$.

Hence, for integration we have the symbolic rules:
$x^{n} \rightarrow x^{n+1} /(n+1) \quad \cos x \rightarrow \sin x \quad \sin x \rightarrow-\cos x$
$a^{x} \rightarrow a^{x} /(\ln a) \quad 1 / x \rightarrow \ln x \quad$ etc.
together with various rules for integrating combinations of functions.

## Why calculus is a successful technology



## The patterns that calculus builds on

- In the world: something moving continuously (e.g. a planet)
- Abstracted to a graph, captured by a function $f$.
- Mathematical model: Slope (a pattern of graphs) is associated to velocity (a pattern of moving objects)
- Change in slope (another pattern of graphs, also a pattern of slopes of graphs) is associated with acceleration (another pattern of moving objects)
- The derivative function $f^{\prime}$ captures the way the slope changes with the position.
- To compute $\mathrm{f}^{\prime}$ you have to shift attention from the behavioral pattern of $f$ to the behavioral pattern of the quantity

$$
\frac{f(x+h)-f(x)}{h}
$$

as h approaches 0 . (The approximations to the slope at x .)

- This entails examining such "sequences of approximations behavior" patterns.


## Patterns of endless number sequences

What does it mean to say that a sequence
$s_{n}$ of numbers approaches a limit $L$ as $n$ increases indefinitely?

## Patterns of endless number sequences


movie: sequences.mov

## Limit of a number sequence

Definition: The number sequence $\left\{s_{n}\right\}$ has limit $L$ as $n \rightarrow \infty$ if, for any given positive real number $\varepsilon$, there is a number $N$ such that $\left|s_{n}-L\right|<\varepsilon$, whenever $n \geq N$.

This replaces a dynamic concept with a static definition.

## The patterns of calculus

Notice that as we develop calculus, at each stage we replace a dynamic pattern with a static one:

- Continuous motion is replaced by a (static) graph.
- The process of approximating the slope is replaced by the determination of the limit of a sequence of numbers.
- The dynamic aspect of moving along a number sequence is replaced by the question of whether certain numbers exist having particular properties.


## The patterns of calculus

Other concepts that had to be developed were:

- What it means to say that a function $f(x)$ has limit $L$ as $x \rightarrow a$ (for some fixed number $a$ ).
- What it means to say that a function $f(x)$ is continuous.


## Continuity

- First defined for functions from real numbers to real numbers.
- Then defined for metric spaces.
- Then defined for topological spaces.


## Metric spaces

Any set M together with a function
$\mathrm{d}: \mathrm{M} \times \mathrm{M} \rightarrow \mathrm{R}$, having the properties
(i) $d(x, y) \geq 0$ for all $x, y$ in $M$
(ii) $d(x, y)=0$ if and only if $x=y$
(iii) $d(x, y)=d(y, x)$
(iv) $\mathrm{d}(\mathrm{x}, \mathrm{z}) \leq \mathrm{d}(\mathrm{x}, \mathrm{y})+\mathrm{d}(\mathrm{y}, \mathrm{z})$

## Topological spaces

Any set T together with a collection $e$ of subsets of T (called the open sets of the topology), having the properties:
(i) $\varnothing$ and T are in $\mathcal{C}$
(ii) if $\mathrm{X}, \mathrm{Y}$ are in $\mathcal{e}$, then $\mathrm{X} \cap \mathrm{Y}$ is in $\mathcal{C}$
(iii) if $\mathcal{F}$ is any collection of members of $\mathcal{C}$, then $\cup \mathcal{F}$ is in $\mathcal{C}$.

## Topological spaces

Any set T together with a collection $e$ of subsets of T (called the open sets of the topology), having the properties:
(i) $\varnothing$ and T are in $\mathcal{C}$
(ii) if $\mathrm{X}, \mathrm{Y}$ are in $\mathcal{e}$, then $\mathrm{X} \cap \mathrm{Y}$ is in $\mathcal{C}$
(iii) if $\mathcal{F}$ is any collection of members of $\mathcal{C}$, then $\cup \mathcal{F}$ is in $\mathcal{C}$.

A function $f$ from one topological space $X$ to another one $Y$ is continuous if $f^{-1}[\mathrm{U}]$ is an open set in X , for every open set U in Y .

## Topology of surfaces <br> (Rubber sheet geometry)



# Euler's solution to the <br> Königsberg Bridges Problem 

A classical result in topology

## Map of Kaliningrad



## Map of Königsberg



## Map of Königsberg



## Euler's network representation of the Königsberg bridges



## Euler's network representation of the Königsberg bridges



## Euler's network theorem

For any network drawn in the plane, if V denotes the number of vertices, E the number of edges, and $F$ the number of faces (enclosed regions), then

$$
V-E+F=1
$$

## Euler's network theorem

Fxample


## Euler's network theorem

 Example

$$
V=4
$$

## Euler's network theorem



$$
V=4
$$

$$
E=7
$$

## Euler's network theorem



$$
V=4
$$

$$
E=7
$$

$$
F=4
$$

## Euler's network theorem

Example

Pr

