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Perspectives on mathematics

 To the person who seeks to understand the world (inc.
scientists):

 language to describe and quantify the world

 To the person who wants to design/build/construct something
(inc. engineers, moviemakers, etc.):

 language to specify

 tools to aid the process (inc. problem solving)

 To the person who wants to engage in trade and commerce:

 precise tracking and planning tool

 To the mathematician:

 a rich field of study having intrinsic aesthetic appeal



The mathematical method

 Identify a particular pattern in the world.

 Study it.

 Develop a notation to describe it.

 Use that notation to further the study.

 Formulate basic assumptions (axioms) to capture the fundamental

properties of the abstracted pattern.

 Study the abstracted pattern, establishing truth by means of rigorous

proofs from the axioms.

 Develop procedures that you and others may use to apply the results of

the study to the world.

 Apply the results to the world.

Mathematics is the science of patterns.Mathematics is the science of patterns.



An example: CALCULUS



Infinitesimal calculus

Isaac Newton Gottfried Leibniz

One of the most successful and far reaching technologies of all time.



Infinitesimal calculus

Motivating real world problem:

Understand and analyze precisely

continuous motion and change.



Differential calculus

A method for calculating rates of change



Differential calculus

Problem: To compute the slope of a curve at a given point.
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Calculating the slope at a point
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b
slope of PQ =  ba

The closer Q is to P,
the closer is the slope
of PQ to the slope of
the curve at P.

But if Q coincides with P, then a and b are both 0, and
the slope of PQ works out as  0/0, which is undefined.



Differential calculus

movie: derivative_1.mov



Differential calculus

movie: derivative_2.mov



Rules of differential calculus

What makes differential calculus useful (in fact, what makes

it a “calculus”), is that there are easily applied, symbolic rules

for calculating the derivatives f’(x) of common functions f(x).

xn → n xn-1 sin x → cos x cos x → – sin x

tan x → sec2x ax → (ln a) ax ln x → 1/x

K f(x) → K f’(x) f + g → f’ + g’ fg → fg’ + gf’

etc.



Where the rules come from

The rules are derived by making a subtle change
in perspective. Having started by looking at the
slope (i.e., the pattern of change) of a function
f(x), you shift to looking at the pattern exhibited by
the slope approximations

f(x+h) – f(x)

h

as h gets progressively smaller, and extrapolating
from that pattern the limit of that sequence of
approximations.



Integral calculus

Calculating areas and volumes

of objects whose boundaries

are continuously changing



Integral calculus

movie: integration_1.mov



Calculating the area beneath a curve

movie: integration_2.mov



Area
= f(x0)h + f(x1)h  + … + f(xn-1)h

= [f(x0) + f(x1)  + … + f(xn-1)] h

=       f(xi) h

The integral

h = xi+1 – xi

Σ
i=0

n-1

Calculate this value for larger and larger values of n (smaller and
smaller values of h), and the limiting value gives the exact area. It
is called the (definite) integral of the function f(x) from a to b:



The Fundamental Theorem of Calculus

If  the derivative of  f(x)  is  g(x),

then the integral of  g(x)  is  f(x).

Hence, for integration we have the symbolic rules:

xn → xn+1 /(n+1) cos x → sin x sin x → – cos x

ax → ax/ (ln a) 1/x → ln x etc.

together with various rules for integrating combinations of

functions.
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Why calculus is a successful technology



The patterns that calculus builds on

 In the world: something moving continuously (e.g. a planet)
 Abstracted to a graph, captured by a function f.
 Mathematical model: Slope (a pattern of graphs) is associated

to velocity (a pattern of moving objects)
 Change in slope (another pattern of graphs, also a pattern of

slopes of graphs) is associated with acceleration (another
pattern of moving objects)

 The derivative function f’  captures the way the slope changes
with the position.

 To compute f’ you have to shift attention from the behavioral
pattern of f to the behavioral pattern of the quantity

f(x+h) – f(x)
               h

as h approaches 0. (The approximations to the slope at x.)
 This entails examining such “sequences of approximations

behavior” patterns.



Patterns of endless number sequences

What does it mean to say that a sequence

sn of numbers approaches a limit  L  as n

increases indefinitely?



Patterns of endless number sequences

movie: sequences.mov



Limit of a number sequence

Definition: The number sequence  {sn}  has

limit  L  as  n → ∞   if, for any given positive

real number ε, there is a number N such that

|sn - L| < ε, whenever n ≥ N.

This replaces a dynamic concept with a static definition.



The patterns of calculus

Notice that as we develop calculus, at each stage we

replace a dynamic pattern with a static one:

 Continuous motion is replaced by a (static) graph.

 The process of approximating the slope is replaced

by the determination of the limit of a sequence of

numbers.

 The dynamic aspect of moving along a number

sequence is replaced by the question of whether

certain numbers exist having particular properties.



The patterns of calculus

Other concepts that had to be developed were:

• What it means to say that a function f(x) has

limit L as x → a  (for some fixed number a).

• What it means to say that a function f(x) is

continuous.



Continuity

 First defined for functions from real

numbers to real numbers.

 Then defined for metric spaces.

 Then defined for topological spaces.



Metric spaces

Any set M together with a function

d: M x M → R, having the properties

(i) d(x,y) ≥ 0 for all x,y in M

(ii) d(x,y) = 0 if and only if  x = y

(iii) d(x,y) = d(y,x)

(iv) d(x,z) ≤ d(x,y) + d(y,z)



Topological spaces

Any set  T  together with a collection  C  of subsets of  T  (called

the open sets of the topology), having the properties:

(i) ∅ and T are in C

(ii) if X, Y are in C, then X ∩ Y is in C

(iii) if  F  is any collection of members of C, then  ∪F is in C.



Topological spaces

Any set  T  together with a collection  C  of subsets of  T  (called

the open sets of the topology), having the properties:

(i) ∅ and T are in C

(ii) if X, Y are in C, then X ∩ Y is in C

(iii) if  F  is any collection of members of C, then  ∪F is in C.

A function  f  from one topological space  X  to another one Y  is

continuous if  f–1[U]  is an open set in X, for every open set U in Y.



Topology of surfaces
(Rubber sheet geometry)



Euler’s solution to the

Königsberg Bridges Problem

A classical result

in topology
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Euler’s network theorem

For any network drawn in the plane, if V

denotes the number of vertices, E the

number of edges, and F the number of

faces (enclosed regions), then

   V – E + F = 1



Euler’s network theorem
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