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P  versus  NPP  versus  NP
The Hodge ConjectureThe Hodge Conjecture

The The PoincarPoincaréé  ConjectureConjecture
The  Riemann  HypothesisThe  Riemann  Hypothesis

Yang-Mills Existence and Mass GapYang-Mills Existence and Mass Gap
NavierNavier-Stokes Existence and Smoothness-Stokes Existence and Smoothness

The Birch and The Birch and SwinnertonSwinnerton––Dyer  ConjectureDyer  Conjecture

The Millennium ProblemsThe Millennium Problems



 The The PoincarPoincaréé  ConjectureConjecture

Prove that the onlyProve that the only
three-dimensionalthree-dimensional
manifold in whichmanifold in which
every closed loopevery closed loop
(or (or hyperloophyperloop) can) can
be continuouslybe continuously
deformed to a pointdeformed to a point
is the 3-sphere.is the 3-sphere.



The Generalized The Generalized PoincarPoincaréé  ConjectureConjecture

1961: Stephen 1961: Stephen Smale Smale proved itproved it
for all dimensions greater than 4for all dimensions greater than 4

1982: Michael Freedman1982: Michael Freedman
proved it for dimension 4proved it for dimension 4



The (Original) The (Original) PoincarPoincaréé  ConjectureConjecture

■■ Remained unsolved, and in 2000 was declared aRemained unsolved, and in 2000 was declared a

$1m Millennium Problem$1m Millennium Problem

■■ It is still unsolvedIt is still unsolved

■■ Or is it?Or is it?



Grigori Grigori ((GrishaGrisha) Perelman) Perelman









The The Geometrization Geometrization ConjectureConjecture

Proposed by WilliamProposed by William

Thurston in the lateThurston in the late

1970s.1970s.

It implies the It implies the PoincarPoincaréé

ConjectureConjecture as a special as a special

case.case.



Every Every 3-manifold3-manifold can built up from pieces, each of which can built up from pieces, each of which
has one of the following eight geometrieshas one of the following eight geometries::

1.1. Euclidean geometryEuclidean geometry
2.2. Hyperbolic geometryHyperbolic geometry
3.3. Spherical geometrySpherical geometry
4.4. The geometry of SThe geometry of S22 x R  [S x R  [S22 is the  is the 2-sphere2-sphere]]
5.5. The geometry of HThe geometry of H22 x R  [H x R  [H22 is the  is the hyperbolic planehyperbolic plane]]
6.6. The geometry of The geometry of SLSL22RR
7.7. Nil geometryNil geometry, i.e. the geometry of the group of upper triangular, i.e. the geometry of the group of upper triangular

3 by 3 matrices with units on the diagonal3 by 3 matrices with units on the diagonal
8.8. Sol geometrySol geometry, i.e. the geometry of the group of upper triangular, i.e. the geometry of the group of upper triangular

2 by 2 matrices.2 by 2 matrices.

The The Geometrization Geometrization ConjectureConjecture



Every irreducible, compact 3-manifold falls into exactly oneEvery irreducible, compact 3-manifold falls into exactly one

of the following categories:of the following categories:
1.1. It has a spherical geometryIt has a spherical geometry

2.2. It has a hyperbolic geometryIt has a hyperbolic geometry

3.3. The fundamental group contains a subgroup isomorphic toThe fundamental group contains a subgroup isomorphic to

the free the free abelian abelian group on two generators (the fundamentalgroup on two generators (the fundamental

group of a group of a torustorus).).

The The Geometrization Geometrization ConjectureConjecture
alternative formulationalternative formulation



PerelmanPerelman’’s Approachs Approach



■■ In the early 1980In the early 1980’’s, Richard Hamilton (USA) showed how to use thes, Richard Hamilton (USA) showed how to use the

idea of Ricci flow (from physics) to make a given 3-manifold idea of Ricci flow (from physics) to make a given 3-manifold ““flowflow””

(or morph) into a form that allows you to cut it up into pieces that(or morph) into a form that allows you to cut it up into pieces that

look like they should satisfy Thurstonlook like they should satisfy Thurston’’s conjecture.s conjecture.
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■■ In the early 1980In the early 1980’’s, Richard Hamilton (USA) showed how to use thes, Richard Hamilton (USA) showed how to use the

idea of Ricci flow (from physics) to make a given 3-manifold idea of Ricci flow (from physics) to make a given 3-manifold ““flowflow””

(or morph) into a form that allows you to cut it up into pieces that(or morph) into a form that allows you to cut it up into pieces that

look like they should satisfy Thurstonlook like they should satisfy Thurston’’s conjecture.s conjecture.

■■ Problem 1: Long thin necks keep developing, sometimes havingProblem 1: Long thin necks keep developing, sometimes having

shapes that are hard to manage.shapes that are hard to manage.

■■ Problem 2: ItProblem 2: It’’s not clear the process terminates.s not clear the process terminates.

■■ Perelman introduced a notion of entropy to help control the flow.Perelman introduced a notion of entropy to help control the flow.

■■ General agreement that he can handle problem 1.General agreement that he can handle problem 1.

■■ Less consensus he has tamed problem 2.Less consensus he has tamed problem 2.

PerelmanPerelman’’s Approachs Approach



Maybe solvedMaybe solved

Current StatusCurrent Status
of theof the

PoincarPoincaréé  ConjectureConjecture
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 Intuitive idea: a proof of X is a piece of

reasoning (an argument) that convinces a

suitably qualified expert that X is true.

 Formal definition: a proof of X is a finite

sequence X1,…,Xn of statements such that Xn

= X and each Xi is either an axiom or else

follows from X1,…Xi-1 by a single application

of a recognized rule of logical deduction.



Example of a logical ruleExample of a logical rule



Example of a logical ruleExample of a logical rule

Modus ponens:



Example of a logical ruleExample of a logical rule

Modus ponens:

From P and P → Q, deduce Q



Example of a logical ruleExample of a logical rule

Modus ponens:

From P and P → Q, deduce Q

Example:



Example of a logical ruleExample of a logical rule

Modus ponens:

From P and P → Q, deduce Q

Example:

P: Julie captains the team



Example of a logical ruleExample of a logical rule

Modus ponens:

From P and P → Q, deduce Q

Example:

P: Julie captains the team

Q: The team wins



Example of a logical ruleExample of a logical rule

Modus ponens:

From P and P → Q, deduce Q

Example:

P: Julie captains the team

Q: The team wins

P → Q: If Julie captain the team, the team wins.



Example of a logical ruleExample of a logical rule

Modus ponens:

From P and P → Q, deduce Q

Example:

P: Julie captains the team

Q: The team wins

P → Q: If Julie captain the team, the team wins.

Modus ponens: “If you know that the team wins whenever Julie captains it,

then if you know that Julie is captaining the team, you can conclude that

the team wins.”
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Example of a mathematical proofExample of a mathematical proof

Theorem: There are infinitely many prime numbers.

Proof: Show that if we enumerate the prime numbers as P1, P2, …, the

list continues for ever.

Suppose we get to some stage N, having enumerated P1, P2, …, PN.

We show that there is still at least one more prime number to go.

Look at the number  Q = P1 x … x PN + 1.

If this number is prime, then it is a prime number bigger than PN.

If Q is not prime, it is divisible by some prime number P less than Q.

P cannot be any of P1, P2, …, PN, since dividing any of those into Q

leaves a remainder of 1. Hence P is a different prime number, which

must be bigger than PN.

Either way, there is a prime number bigger than PN.
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Mold-breaking recent examplesMold-breaking recent examples

 Fermat’s last theorem: Prove that for any integer exponent

n greater than 2, the equation  xn + yn = zn   has no nonzero

integer solutions.

 The four color theorem: Prove that any map drawn in the

plane may be colored using at most four colors.

 Classification of finite simple groups: Describe the different

kinds of finite simple groups.

 The Kepler Conjecture: Prove that the face-centered cubic

lattice (the orange-pile configuration) is the most efficient

way to pack identical spheres in space.
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that X is true. [SOCIOLOGICAL]
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 Formal definition: a proof of X is a finite sequence

X1,…,Xn of statements such that Xn = X and each Xi
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