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The Millennium Problems

P versus NP
The Hodge Conjecture
The Poincaré Conjecture
The Riemann Hypothesis
Yang-Mills Existence and Mass Gap
Navier-Stokes Existence and Smoothness
The Birch and Swinnerton—-Dyer Conjecture



The Poincarée Conjecture

Prove that the only
three-dimensional
manifold in which
every closed loop
(or hyperloop) can
be continuously
deformed to a point
Is the 3-sphere.




The Generalized Poincaré Conjecture

1961: Stephen Smale proved it 1982: Michael Freedman
for all dimensions greater than 4 proved it for dimension 4



The (Original) Poincarée Conjecture

B Remained unsolved, and in 2000 was declared a
$1m Millennium Problem

m Itis still unsolved

m Orisit?
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The entropy formula for the Ricci flow and its geometric
applications

Authors: Grisha Perelman

Comments: 39 pages
Subj-class: Differential Geometry
MSC-class: 53C

We present a monotonic expression for the Ricci flow, valid in all dimensions and without
curvature assumptions. It is interpreted as an entropy for a certain canonical ensemble.
Several geometric applications are given. In particular, (1) Ricci flow, considered on the
space of riemannian metrics modulo diffeomorphism and scaling, has no nontrivial
periodic orbits (that is, other than fixed points); (2) In a region, where singularity is
forming in finite time, the injectivity radius is controlled by the curvature; (3) Ricci flow
can not quickly turn an almost euclidean region into a very curved one, no matter what
happens far away. We also verify several assertions related to Richard Hamilton's program
for the proof of Thurston geometrization conjecture for closed three-manifolds, and give a
sketch of an eclectic proof of this conjecture, making use of earlier results on collapsing
with local lower curvature bound.




[math/0211159] The entropy formula for the Ricci flow and its geometric applications

Mathematics, abstract
math.DG/0211159

From: Grisha Perelman [view email]
Date: Mon, 11 Nov 2002 16:11:4%8 GMT (33kb)

The entropy formula for the Ricci flow and its geometric
applications

Authors: Grisha Perelman

Comments: 39 pages
Subj-class: Differential Geometry
MSC-class: 53C

We present a monotonic expression for the Ricci flow, valid in all dimensions and without
curvature assumptions. It is interpreted as an entropy for a certain canonical ensemble.
Several geometric applications are given. In particular, (1) Ricci flow, considered on the
space of riemannian metrics modulo diffeomorphism and scaling, has no nontrivial
periodic orbits (that is, other than fixed points); (2) In a region, where singularity is
forming in finite time, the injectivity radius is controlled by the curvature; (3) Ricci flow
can not quickly turn an almost euclidean region into a very curved one, no matter what
happens far away. We also verify several assertions related to Richard Hamilton's program
for the proof of Thurston geometrization conjecture for closed three-manifolds, and give a
sketch of an eclectic proof of this conjecture, making use of earlier results on collapsing
with local lower curvature bound.




[math/0211159] The entropy formula for the Ricci flow and its geometric applications

Mathematics, abstract
math.DG/0211159

From: Grisha Perelman [view email]
Date: Mon, 11 Nov 2002 16:11:4%8 GMT (33kb)

The entropy formula for the Ricci flow and its geometric
applications

Authors: Grisha Perelman

Comments: 39 pages
Subj-class: Differential Geometry
MSC-class: 53C

We present a monotonic expression for the Ricci flow, valid in all dimensions and without
curvature assumptions. It is interpreted as an entropy for a certain canonical ensemble.
Several geometric applications are given. In particular, (1) Ricci flow, considered on the
space of riemannian metrics modulo diffeomorphism and scaling, has no nontrivial
periodic orbits (that is, other than fixed points); (2) In a region, where singularity is
forming in finite time, the injectivity radius is controlled by the curvature; (3) Ricci flow
can not quickly turn an almost euclidean region into a very curved one, no matter what
happens far away. We also verify several assertions related to Richard Hamilton's program
for the proof of Thurston geometrization conjecture for closed three-manifolds, and give a
sketch of an eclectic proof of this conjecture, making use of earlier results on collapsing
with local lower curvature bound.




The Geometrization Conjecture

Proposed by William
Thurston in the late
1970s.

It implies the Poincareé

Conjecture as a special

case.




The Geometrization Conjecture

Every 3-manifoldgean built up/f é;h\pieces, each of which
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The Geometrization Conjecture
alternative formulation

- >

Every irreducible, compact 3-manifold falls into exactly one

of the following categories:
1. It has a spherical geometry

2. It has a hyperbolic geometry
3. The fundamental group contains a subgroup isomorphic to
the free abelian group on two generators (the fundamental

group of a torus).
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Perelman’s Approach

In the early 1980’s, Richard Hamilton (USA) showed how to use the
idea of Ricci flow (from physics) to make a given 3-manifold “flow”
(or morph) into a form that allows you to cut it up into pieces that
look like they should satisfy Thurston’s conjecture.

Problem 1: Long thin necks keep developing, sometimes having
shapes that are hard to manage.

Problem 2: It’s not clear the process terminates.

Perelman introduced a notion of entropy to help control the flow.
General agreement that he can handle problem 1.

Less consensus he has tamed problem 2.



Current Status
of the
Poincaré Conjecture

Maybe solved



The nature of mathematical proof



The nature of mathematical proof

= Intuitive idea: a proof of X is a piece of
reasoning (an argument) that convinces a
suitably qualified expert that X is true.



The nature of mathematical proof

= Intuitive idea: a proof of X is a piece of
reasoning (an argument) that convinces a
suitably qualified expert that X is true.

= Formal definition: a proof of X is a finite
sequence X,,...,X, of statements such that X
= X and each X; is either an axiom or else
follows from X,,...X:_; by a single application
of a recognized rule of logical deduction.
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Example of a logical rule

Modus ponens:

From P and P — Q, deduce Q

Example:

P: Julie captains the team

Q: The team wins

P — Q: If Julie captain the team, the team wins.

Modus ponens: “If you know that the team wins whenever Julie captains it,
then if you know that Julie is captaining the team, you can conclude that
the team wins.”
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Example of a mathematical proof

Theorem: There are infinitely many prime numbers.

Proof: Show that if we enumerate the prime numbers as P,, P,, ..., the
list continues for ever.

Suppose we get to some stage N, having enumerated P,, P, ..., Py.
We show that there is still at least one more prime number to go.

Look at the number Q =P, x ... x Py + 1.
If this number is prime, then it is a prime number bigger than P,,.
If Q is not prime, it is divisible by some prime number P less than Q.

P cannot be any of P,, P,, ..., P, since dividing any of those into Q
leaves a remainder of 1. Hence P is a different prime number, which
must be bigger than P,.

Either way, there is a prime number bigger than P,.
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Mold-breaking recent examples

Fermat’s last theorem: Prove that for any integer exponent
n greater than 2, the equation x" + y" =z" has no nonzero
iInteger solutions.

The four color theorem: Prove that any map drawn in the
plane may be colored using at most four colors.

Classification of finite simple groups: Describe the different
kinds of finite simple groups.

The Kepler Conjecture: Prove that the face-centered cubic
lattice (the orange-pile configuration) is the most efficient
way to pack identical spheres in space.
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The nature of mathematical proof

= [ntuitive idea: a proof of X is a piece of reasoning (an
argument) that convinces a suitably qualified expert
that X is true. [SOCIOLOGICAL]

= REAL PROOFS

= Formal definition: a proof of X is a finite sequence
X4,..., X, of statements such that X, = X and each X
Is either an axiom or else follows from X,,...X., by a
single application of a recognized rule of logical
deduction. [IDEALIZED, FORMAL]



